Exact Bounds for Linear Outputs of the Advection-Diffusion-Reaction Equation Using Flux-Free Error Estimates

نویسندگان

  • Núria Parés
  • Pedro Díez
  • Antonio Huerta
چکیده

The paper introduces a methodology to compute strict upper and lower bounds for linear-functional outputs of the exact solutions of the advection-reaction-diffusion equation. The proposed approach is an alternative to the standard residual type estimators (hybrid-flux), circumventing the need of flux-equilibration following a fluxfree error estimation strategy. The presented estimator provides sharper estimates than the ones provided by both the standard hybrid-flux techniques and other flux-free techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Error Bounds for Linear Outputs of the Convection-diffusion-reaction Equation Using Flux-free Error Estimators

The Flux-free approach is a promising alternative to standard implicit residual time error estimators that require the equilibration of hybrid fluxes. The idea is to solve local error problems in patches of elements surrounding one node (also known as stars) instead of in single elements [1]. The resulting local problems are flux-free, that is the boundary conditions are natural and hence their...

متن کامل

Computing Bounds for Linear Functionals of Exact Weak Solutions to the Advection-Diffusion-Reaction Equation

We present a cost effective method for computing quantitative upper and lower bounds on linear functional outputs of exact weak solutions to the advection-diffusion-reaction equation and we demonstrate a simple adaptive strategy by which such outputs can be computed to a prescribed precision. The bounds are computed from independent local subproblems resulting from a standard finite element app...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

A Posteriori Energy-norm Error Estimates for Advection-diffusion Equations Approximated by Weighted Interior Penalty Methods

We propose and analyze a posteriori energy-norm error estimates for weighted interior penalty discontinuous Galerkin approximations of advection-diffusion-reaction equations with heterogeneous and anisotropic diffusion. The weights, which play a key role in the analysis, depend on the diffusion tensor and are used to formulate the consistency terms in the discontinuous Galerkin method. The erro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2009